

Functions

· A function is said to be computable if there is an effective procedure (an algorithm) for evaluating the function which, given any input or set of input values for which the function is defined, produces the correct result and halts in a finite amount of time.

· If the function is undefined for some input values in its domain, the procedure is not required to halt.

· Turing machines computes functions

· Mathematical characteristics of turing computable functions is called primitive recursive functions

· A decision problem can be reformulated as a function by defining a function which returns 0 if the answer is 'no' or the predicate is false or 1 if the answer is 'yes' or the predicate is true.

Partial function

· A function is not defined for some of its domain.

· Let X1, X2,…, Xn are sets. And X represents the Cartesian product

X = X1 x X2 x…x Xn . Partial function from X to Y, for each x1 in X1 , x2 in X2,..

 xn in Xn , there exist at most one y in Y for which (x1, x2,.. xn, y)
[image: image1.wmf]Î

 f

Examples

i. Division is (usually) a partial function since anything divided by 0 is undefined.

ii. X1 = {0,1,2}
 X2 = {0,1,2}
Y = {a,b,c,d}

f = { (0,0,b), (1,2,d), (1,1,b), (0,1,c), (2,0,c) }

Function f is partial, because it is not defined for (0,2), (1,0), (2,1) and (2,2)

Total function

· A function which is defined for all inputs of its domain.

· Let X1, X2,…, Xn are sets. And X represents the Cartesian product

X = X1 x X2 x…x Xn . Partial function from X to Y, for each x1 in X1 , x2 in X2,..

xn in Xn , there exist exactly one y in Y for which (x1, x2,.. xn, y)
[image: image2.wmf]Î

 f

Example

i.
X1 = {0,1,2}
 X2 = {0,1,2}
Y = {a,b,c,d}

f = { (0,0,b), (1,2,d), (1,1,b), (0,1,c), (2,0,c), (0,2,a), (1,0,b), (2,1,c), (2,2,d) }

Partial Recursive function

· Function computed by Turing Machine that need not halt for all inputs.

Total Recursive function

· Function computed by Turing Machine that halts for all inputs.

Building Operations

Complex functions are built by composition, primitive recursive functions and minimization

Base functions and Strategy Set

i. Integer Set

1. Zero Function

ZERO(x) = 0

e.g., ZERO(3) = 0

2. Successor Function

SUCC(x) = x+1

e.g., SUCC(3) = 4

3. Selector Function

SEL(n,k) = Ikn (X1 , X2, .. Xn) = Xk (k
[image: image3.wmf]£

n)

e.g., Given I35 (10,6,4,8,2) , SEL(5,2) = 6

ii. Character Set

(examples defined for
[image: image4.wmf]=

å

{a,b})

1. NIL Function

NIL (x) = ^

e.g., ZERO(a) = 0

2. Prefix Function

CONS(ai (x)) = aix

e.g., CONS(aba(b)) = abab

3. Selector Function

SEL(n,k) = Ikn (X1 , X2, .. Xn) = Xk (k
[image: image5.wmf]£

n)

e.g., Given I35 (a,ab,aa,b,abb) , SEL(5,2) = ab

Primitive Recursive Functions

· Functions defined in terms of base functions and strategy sets

i. Integer Set

1. Addition

SUM(0,x)
= SEL(1,1)x

SUM(m+1, 0)
= SUCC (SEL(3,2) (m, SUM(m,x) , x))

2. Multiplication

PROD(0,x)
= ZERO (x)

PROD(m+1,x) = SUM (SEL(3,2) (m, PROD(m,x), x) ,

 SEL(3,3) (m, PROD(m,x), x))

3. Predecessor

PRED (0)
= SEL(0,0)

PRED (m+1)
= SEL(2,1) (m, PRED(m))

4. Factorial

FACT(0)
= SECC(ZERO(x))

FACT(n+1)
= PROD(FACT(n), SECC(n))

5. Exponentiation

EXP(x,0)
= SUCC (ZERO(x))

EXP(x,y+1)
= PROD(EXP(x,y), SEL(2,1)(x,y))

6. Proper Substraction

[image: image6.png]xy ify<x
{0 otherwise

[image: image7.png]

7. Modulus

[image: image8.png]= SUM((x2y), (y:5))

[image: image9.png]MG, y) == (x=y)
MAX(xy) =yHx=>y)

ii. Character Set

1. REVERSE ()
= 

REVERSE(a, x)
= APPEND(REVERSE(x), CONS(a, NIL(x))

2. APPEND(, X)
= IDEN(x)

APPEND(a1x1 , x2)
= CONS(a1APPEND(x1 , x2))

3. IDEN()

= 

IDEN(a1x1)

= CONS(a1(x))

4. HEAD()

= 

HEAD(a1x1)

= a1

5. TAIL()

= 

TAIL(a1x1)

= x
// word removing head

6. RIGHT(x)

= HEAD(REVERSE(x)) // rightmost letter

7. LEFT(x)

= REVERSE(TAIL (REVERSE(x))

// word after removing RIGHT(x)

_120504712.unknown

_120509132.unknown

_120509452.unknown

_120509772.unknown

_120510092

_120510412

_120510732

_120511052

_120508812.unknown

